Coating Damp Concrete

Water Based, Solvent Based or Solvent Free

Lex Edmond
Consultant

Nick Subotsch
Technical Director

Introduction

- 28 day cure before coating
 - Is the de facto industry Standard
 - Some consider this to be overly conservative
- Many waterborne coatings for concrete
 - Claimed to be suitable for wet and/or green concrete
- Anecdotal evidence that solvent containing or solvent free systems
 - May give better adhesion
- Performance under marginal conditions?
 - Surface water
 - Low temperatures

ACA Signs SSPC Licence Agreement

- "Following a successful trial of the SSPC Concrete Coating Inspection course earlier this year in Melbourne, the ACA has recently signed an agreement with SSPC to act as a licensee for this course in Australasia."
- "The objective of this course is to train individuals thoroughly in the proper methods of inspecting surface preparation and installation of protective coatings on concrete structures and facilities."
- "The SSPC Concrete Coating Inspection course will be added to the ACA 2016 course calendar.

Concrete Substrate

- "Capping Tiles" used
 - Manufactured by National Masonry (www.nationalmasonry.com.au)
 - From a standard masonry mix
 - Designed to achieve:
 15 MPa Characteristic Compressive Strength
- No load requirement
 - Therefore no specification for strength for this product

Concrete Mix Composition

- Known details
 - Quarried aggregate <30%
 - Sand <40%
 - Coal ash <30%
 - Portland cement <15%
 - Grade or Product Code: 5031

Concrete Surface Preparation

Three levels of "wetness"

Dry

Concrete slabs left for at least 30 days in ambient air before coating

Wet

- Immersed in potable water
- Then removed and coated
- 30 minutes later

Damp

- Immersed in potable water
- Then removed and coated
- 90 minutes later

Water bath

Summary of Preparation Method

- Concrete slabs
 - 400 x 190 x 40 mm
- Abrasive blasted
 - Clean, rough surface
- Immersed in potable water
 - For more than 30 days
- Removed from water
 - Coated 30 & 90 minutes later
- Dry slabs as controls

Coating Systems

ID	Vehicle	Туре	Comment
A	None	BisA based Epoxy + Amine	100% solids High Build Epoxy
В	None	Epoxy Novolac + Amine	100% solids High Build Novolac
С	Water	Polymer Epoxy Emulsion and Cement	Polymer Modified Cement Coating
D	MEK/Xylene	BisA based Epoxy + Amine	75% Solids High Build Epoxy
E	MEK/Xylene	Epoxy Novolac + Amine	75% Solids High Build Novolac
F	Water	BisA based Epoxy + Amine	Water dispersion – water added

Application

Adhesion Tests

- Pull off adhesion (MPa)
- "DeFelsko" "PosiTest" AT-A
- Coatings cured for at least one week
- 50 mm dollies
 - Maximum value 3.30 MPa
- 0.12 MPa per second
 - Commonly used rate for concrete coatings
- Duplicate results
- Failure mode/s (and percentages) determined

Adhesion Tests

Adhesion Tests

Australasian Corrosion Association - Corrosion & Prevention 2015. Paper 132

ID	Vehicle	^^^^^		adhesion es (MPa)	Failure	Average value	
				High	Low	High	(MPa)
Α	None	BisA based Epoxy + Amine	>3.30	>3.30	100% Cc	100% G	>3.3
В	None	Epoxy Novolac + Amine	2.80	>3.30	100% Cc	100% Cc	≥3
С	Water	Polymer Epoxy Emulsion + Cement	2.02	2.13	100% Cc	80% Ct 20% Cc	2.1
D	MEK/ Xylene	BisA based Epoxy + Amine	3.22	>3.30	70% Cc 30% G	100% G	≥3
Е	MEK/ Xylene	Epoxy Novolac + Amine	>3.30	>3.30	80% G 20% Cc	100% Cc	>3.3
F	Water	BisA based Epoxy + Amine	2.98	>3.30	100% Cc	100% Cc	≥3

ID	Vehicle	Type	100000000000000000000000000000000000000	Pull-off adhesion values (MPa)		Failure modes		
		- 7 0	Low	High	Low	High	value (MPa)	
Α	None	BisA based Epoxy + Amine	>3.30	>3.30	100% Cc	100% G	>3.3	
В	None	Epoxy Novolac + Amine	2.80	>3.30	100% Cc	100% Cc	≥3	
С	Water	Polymer Epoxy Emulsion + Cement	2.02	2.13	100% Cc	80% Ct 20% Cc	2.1	
D	MEK/ Xylene	BisA based Epoxy + Amine	3.22	>3.30	70% Cc 30% G	100% G	≥3	
Е	MEK/ Xylene	Epoxy Novolac + Amine	>3.30	>3.30	80% G 20% Cc	100% Cc	>3.3	
F	Water	BisA based Epoxy + Amine	2.98	>3.30	100% Cc	100% Cc	≥3	

A Adhesive failure
between the coating &
the concrete
Cc Cohesive failure in
the concrete
Ct Cohesive failure in

the coating

G Failure between the adhesive and the coating (glue failure)

ID	Vehicle	Type		adhesion es (MPa)	Failure	Average value	
		Low High		Low	High	(MPa)	
Α	None	BisA based Epoxy + Amine	>3.30	>3.30	100% Cc	100% G	>3.3
В	None	Epoxy Novolac + Amine	2.80	>3.30	100% Cc	100% Cc	≥3
С	Water	Polymer Epoxy Emulsion + Cement	2.02	2.13	100% Cc	80% Ct 20% Cc	2.1
D	MEK/ Xylene	BisA based Epoxy + Amine	3.22	>3.30	70% Cc 30% G	100% G	≥3
Е	MEK/ Xylene	Epoxy Novolac + Amine	>3.30	>3.30	80% G 20% Cc	100% Cc	>3.3
F	Water	BisA based Epoxy + Amine	2.98	>3.30	100% Cc	100% Cc	≥3

Polymer epoxy emulsion cement 1 MPa lower (or more)

A Adhesive failure between the coating & the concrete

Ct Cohesive failure in the coating

Cc Cohesive failure in the concrete

G Failure between the adhesive and the coating (glue failure)

Results on Damp slabs

ID	Vehicle	ehicle Type		Pull-off adhesion values (MPa)		modes	Average value
			Low	High	Low	High	(MPa)
A	None	BisA based Epoxy + Amine	0.92	>3.30	35% A 60% G 5% Cc	70% A 30% Cc	≥1
В	None	Epoxy Novolac + Amine	1.33	1.51	100% G	20% A 80% G	1.4
С	Water	Polymer Epoxy Emulsion + Cement	1.50	1.60	70% Ct 30% G	90% Ct 10% Cc	1.6
D	MEK/ Xylene	BisA based Epoxy + Amine	0.57	1.13	90 % A 5 % Cc 5% G	80% A 20% Cc	0.9
Е	MEK/ Xylene	Epoxy Novolac + Amine	1.01	1.03	90 % A 5 % Cc 5% G	80% A 20% Cc	1.0
F	Water	BisA based Epoxy + Amine	2.51	3.04	100% Cc	100% Cc	2.8

Spurious result

A Adhesive failure between the coating & the concrete Ct Cohesive failure in the coating

Cc Cohesive failure in the concrete

G Failure between the adhesive and the coating (glue failure)

Results on Damp slabs

ID	Vehicle	Туре	Pull-off adhesion values (MPa)		Failure	modes	Average value
			Low	High	Low	High	(MPa)
A	None	BisA based Epoxy + Amine	0.92	>3.30	35% A 60% G 5% Cc	70% A 30% Cc	≥1
В	None	Epoxy Novolac + Amine	1.33	1.51	100% G	20% A 80% G	1.4
С	Water	Polymer Epoxy Emulsion + Cement	1.50	1.60	70% Ct 30% G	90% Ct 10% Cc	1.6
D	MEK/ Xylene	BisA based Epoxy + Amine	0.57	1.13	90 % A 5 % Cc 5% G	80% A 20% Cc	0.9
Е	MEK/ Xylene	Epoxy Novolac + Amine	1.01	1.03	90 % A 5 % Cc 5% G	80% A 20% Cc	1.0
F	Water	BisA based Epoxy + Amine	2.51	3.04	100% Cc	100% Cc	2.8

Inconsistent results of a solvent free system

A Adhesive failure between the coating & the concrete Ct Cohesive failure in the coating

Cc Cohesive failure in the concrete

G Failure between the adhesive and the coating (glue failure)

Results on wet slabs

ID	Vehicle	Type	Pull-off adhesion values (MPa)		Failure	Average value	
			Low	High	Low	High	(MPa)
Α	None	BisA based Epoxy + Amine	0.66	1.30	90% A 10% Cc	80% A 5% Cc 15% G	1.0
В	None	Epoxy Novolac + Amine	1.26	1.55	100% G	65% A 5% Cc 30% G	1.4
С	Water	Polymer Epoxy Emulsion + Cement	1.54	1.65	60% Ct 40% Cc	100% Ct	1.6
D	MEK/ Xylene	BisA based Epoxy + Amine	0.23	0.66	90% A 10% Cc	95% A 5% Cc	0.4
E	MEK/ Xylene	Epoxy Novolac + Amine	0.28	0.61	90% A 10% Cc	95% A 5% Cc	0.4
F	Water	BisA based Epoxy + Amine	1.94	2.79	100% Cc	100% Cc	2.4

Spurious result:
Incomplete
coating cover
means adhesion
directly to
concrete occurs

A Adhesive failure between the coating & the concrete

Ct Cohesive failure in the coating

Cc Cohesive failure in the concrete

G Failure between the adhesive and the coating (glue failure)

Results on wet slabs

ID	Vehicle Type valu			adhesion (MPa)	Failure	Average value	
			Low	High	Low	High	(MPa)
Α	None	BisA based Epoxy + Amine	0.66	1.30	90% A 10% Cc	80% A 5% Cc 15% G	1.0
В	None	Epoxy Novolac + Amine	1.26	1.55	100% G	65% A 5% Cc 30% G	1.4
С	Water	Polymer Epoxy Emulsion + Cement	1.54	1.65	60% Ct 40% Cc	100% Ct	1.6
D	MEK/ Xylene	BisA based Epoxy + Amine	0.23	0.66	90% A 10% Cc	95% A 5% Cc	0.4
E	MEK/ Xylene	Epoxy Novolac + Amine	0.28	0.61	90% A 10% Cc	95% A 5% Cc	0.4

Poor adhesion of solvent /borne systems

A Adhesive failure between the coating & the concrete

Ct Cohesive failure in the coating

Cc Cohesive failure in the concrete

G Failure between the adhesive and the coating (glue failure)

Pull off	adhesion re	sult	s Epoxies on Concrete	50mm di	ameter dollie	s glued to ep	oxies with	Epigen 907	
				Glue app	lied: 13/6/15.	Tested 16/0	5/15	Positest AT	0.12 MPa/s
		ME	w	Pull-off			Failure	e Mode	
Slab	Concrete condition	D	Epoxy system	Мра	Average	Cc	А	Ct	G
3	Dry	A	100% solids High Build Epoxy	3.30 3.30	3.30	100			100
	Dry	B	100% solids High Build Novolac	3.30 2.80	3.05	100 100			
>	Dry	C	Polymer Modified Cement Coating	2.13 2.02	2.08	20 100		80	
	Dry	D	75% solids High Build Epoxy	3.22 3.30	3.26	70			30 100
	Dry	E	75% solids High Build Novolac	3.30 3.30	3.30	20 100			80
	Dry	F	Water dispersion – water added	3.30 2.98	3.14	100 100			
	Damp	A	100% solids High Build Epoxy	0.92 3.30	3.04	5 30	35 70		60
<u>O</u>	Damp	В	100% solids High Build Novolac	1.51 1.33	1.42		20		80 100
Damp	Damp	C	Polymer Modified Cement Coating	1.60 1.50	1.55	10		90 70	30
	Damp	D	75% solids High Build Epoxy	0.57 1.13	0.85	5 20	90 80		5
	Damp	E	75% solids High Build Novolac	1.01 1.03	1.02	5 20	90 80		5
0 11	Damp	F	Water dispersion – water added	2.51 3.04	2.78	100 100			
	Wet	A	100% solids High Build Epoxy	1.30 0.66	0.98	5 10	80 90		15
	Wet	B	100% solids High Build Novolac	1.55 1.26	1.41	5	65		30 100
Wet	Wet	C	Polymer Modified Cement Coating	1.54 1.65	1.60	40		60 100	
5	Wet	D	75% solids High Build Epoxy	0.66 0.23	0.45	5 10	95 90		
	Wet	E	75% solids High Build Novolac	0.61 0.28	0.45	5 10	95 90		
17	Wet	F	Water dispersion – water added	1.94 2.79	2.37	100 100			

Cc = Substrate failure A = Adhesive failure Ct = Coating cohesive failure G = Dolly adhesive failure

OLD

A Polymer Modified Cement Coating
B Water Dispersion
C 100% solids High Build Epoxy
D 100% solids High Build Novolac
E 75% solids High Build Epoxy
F 75% solids High Build Novolac

Solvent: Xylene/MEK

Ct = Coating cohesive failure

Substrate failure primarily

A	Polymer Modified Cement Coating
В	Water Dispersion
C	100% solids High Build Epoxy
D	100% solids High Build Novolac
E	75% solids High Build Epoxy

Photo Record

Polymer modified cement to **dry** concrete.

Top: Solvent containing epoxy novolac. Bottom: Water dispersed system.

Australasian Corrosion Association - Corrosion & Prevention 2015. Paper 132

Photo Record

Water dispersed system (with added water) to **dry** concrete.

Australasian Corrosion Association - Corrosion & Prevention 2015. Paper 132

Solvent based standard epoxy to **dry** concrete.

Photo Record

Solvent based standard epoxy to **wet** concrete

X10 Magnification

Australasian Corrosion Association - Corrosion & Prevention 2015. Paper 132

epoxy cement

Results on Damp slabs

Australasian Corrosion Association - Corrosion & Prevention 2015. Paper 132

Results on wet slabs

Australasian Corrosion Association - Corrosion & Prevention 2015. Paper 132

Observations

- Coatings containing solvent demonstrate reduced adhesion to concrete that has water present, the more water the worse the adhesion.
- Solventless coatings do adhere to wet concrete but the improvement in adhesion increases very quickly with drying or drainage time – would have been very interested to see results had 2 to 3 hours after removal from water.

Observations

- The water dispersed system (with water added) is not practical to use as a barrier coating, did show increased adhesion values but not conclusive in relation to the mechanisms and relationships (the concrete substrate was not completely covered by the coating).
- The polymer cement also had poor cohesive strength when applied to damp or wet concrete and the integrity as a whole is questionable.

Next Steps

- This work provides sufficient interest to undertake further evaluation into the adhesion on concrete that is:
 - Over-coated hours and days after withdrawing from water:
 - 24, 48, 72 hours old = actual green (preparation?)
 - Other concrete ages
- An investigation into the effect of Moisture Vapour
 Transmission (MVT) through concrete is warranted
 - Using slabs that are standing in water with the top surface exposed to air, rather than draining under positive MVT load

Acknowledgements

 Sally Nugent of Salyent – for format & test inputs, and critique

 Michael Arnott of McElligott Partners – blasting of concrete test slabs

Thank you

